THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5210 Discrete Mathematics 2017-2018 Suggested Solution to Assignment 4

- 1. (a) Show that $x^3 + x^2 + 2$ is an irreducible polynomial in $\mathbb{Z}_3[x]$.
 - (b) Suppose that F be the field defined by $\mathbb{Z}_3[x]/\langle x^3 + x^2 + 2 \rangle$. If $\alpha = x^2 + x + 1$, $\beta = x^2 + 2 \in F$, find $\alpha + \beta$, $\alpha\beta$ and α^{-1} .

Ans:

- (a) Let $f(x) = x^3 + x^2 + 2$. Then f(0) = 2, f(1) = 1 and f(2) = 2 which are all nonzero. f(x) is a cubic polynomial without linear factor and so f(x) is an irreducible in $\mathbb{Z}_3[x]$.
- (b) Note that $x^3 + x^2 + 2 \equiv 0 \pmod{x^3 + 2x^2 + 2}$, so $x^3 \equiv -x^2 2 \equiv 2x^2 + 1 \pmod{x^3 + 2x^2 + 2}$. Then, $\alpha + \beta = 2x^2 + x$ and

$$\begin{aligned} \alpha\beta &= x^4 + x^3 + 3x^2 + 2x + 2 \\ &= x(x^3) + x^3 + 2x + 2 \\ &= x(2x^2 + 1) + (2x^2 + 1) + 2x + 2 \\ &= 2x^3 + 2x^2 + 3x + 3 \\ &= 2(2x^2 + 1) + 2x^2 \\ &= 6x^2 + 2 \\ &= 2 \end{aligned}$$

By extended Euclidean algorithm, we have $1 = (x^2 + x + 1)(2x^2 + 1) + x(x^3 + x^2 + 2)$. Therefore, $(x^2 + x + 1)(2x^2 + 1) \equiv 1 \pmod{x^3 + x^2 + 2}$ and we have $\alpha^{-1} = 2x^2 + 1$.

2. The parity check matrix of [15,11] binary Hamming code is given by

What are the decoded vectors if vector $y_1 = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)$ and

 $y_2 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)$ are received?

Ans:

We compute the syndrome $y_1 H^T = (1, 0, 0, 1)$ which is the fifth row of H^T . Therefore, the decoded vector is $c_1 = y_1 - e_5 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)$.

We also compute the syndrome $y_2H^T = (0, 1, 0, 0)$ which is the 13-th row of H^T . Therefore, the decoded vector is $c_1 = y_1 - e_{13} = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)$.

3. Let $F = \mathbb{Z}_2[x]/\langle x^2 + x + 1 \rangle$ and let

be the generating matrix of a [5, 3] linear code C over the field F.

- (a) Find a parity check matrix of C and show that the minimum distance d(C) of C is 3.
- (b) Show that C is a perfect code.
- (c) What are the decoded vectors if vector $y_1 = (x, 1, 1 + x, x, 0)$ and $y_2 = (1, x, 1 + x, 1 + x, 1)$ are received?

Ans:

(a) $H = \begin{pmatrix} 1 & x & 1 & 1 & 0 \\ x & 1 & 1 & 0 & 1 \end{pmatrix}$ is a parity matrix of *C*.

Here, we denote the entry of H located at the *i*-th row and *j*-th column by h_{ij} .

Let $v \in C$ with $v \neq 0$. Then wt(v) > 0. Note that $vH^T = 0$, so

- if wt(v) = 1, then $v = ae_i$ for some nonzero $a \in F$ and $vH^T = ae_iH^T = (ah_{i1}, ah_{i2})$ which is nonzero (Contradiction).
- if wt(v) = 2, then $v = a_i e_i + a_j e_j$ for some nonzero $a_i, a_j \in F, i \neq j$. We have $(0,0) = vH^T = (a_i e_i + a_j e_j)H^T = (a_i h_{i1} + a_j h_{j1}, a_i h_{i2} + a_j h_{j2})$, i.e.

$$\left(\begin{array}{cc} h_{i1} & h_{j1} \\ h_{i2} & h_{j2} \end{array}\right) \left(\begin{array}{c} a_i \\ a_j \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right).$$

However, the det $\begin{pmatrix} h_{i1} & h_{j1} \\ h_{i2} & h_{j2} \end{pmatrix} \neq 0$ for all $i \neq j$ and so the above system may only have trivial solution, which contradicts to that a_i and a_j are nonzero.

Therefore, $d(C) \geq 3$.

On the other hand, if v = (0, 0, 1, 1, 1), then v is the third row of G which implies $v \in C$ and we have wt(v) = 3. Therefore, d(C) = 3.

(b) Note that the number of codewords = 4^3 and the number of vectors in a Hamming sphere of radius 1 centered at a codeword = $1 + 5 \times 3 = 16 = 4^2$. Therefore,

(Number of code words) × (Number of elements per sphere) = 4^5 = Number of vectors in F^5

and it is a perfect code.

(c) We compute the syndrome $y_1H^T = (1,1) = e_3H^T$. Therefore, the decoded vector is $c_1 = y_1 - e_3 = (x, 1, x, x, 0)$.

We also compute the syndrome $y_2H^T = x(1,1) = xe_3H^T$. Therefore, the decoded vector is $c_1 = y_1 - xe_3 = (1, x, 1, 1 + x, 1)$.

4. Let C be a linear code over \mathbb{Z}_3 generated by the matrix

$$G = (1 \ 2 \ 1).$$

- (a) List all the codewords of C and show that the minimum distance d(C) is 3.
- (b) Find a parity check matrix of C and hence construct a table of coset leaders and syndromes.
- (c) Use the table constructed in (b) to decode the received vector (2, 0, 1).

Ans:

- (a) Since there is only one row vector in G, namely v = (1, 2, 1). Therefore, $C = \text{span}\{v\} = \{cv : c \in \mathbb{Z}_3\} = \{(0, 0, 0), (1, 2, 1), (2, 1, 2)\}.$ Then, we have d(C) = 3.
- (b) We have

$$H = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 2 & 0 & 1 \end{array}\right)$$

as a parity check matrix.

We construct the following table:

$(0,\!0,\!0)$	(1,2,1)	(2,1,2)
(1,0,0)	(2,2,1)	(0,1,2)
(0,1,0)	(1,0,1)	(2,2,2)
(0,0,1)	(1,2,2)	(2,1,0)
(2,0,0)	(0,2,1)	(1,1,2)
(0,2,0)	(1,1,1)	(2,0,2)
(0,0,2)	(1,2,0)	(2,1,1)
(1,1,0)	(2,0,1)	(0,2,2)
(0,1,1)	(1,0,2)	(2,2,0)

where the first column consists of coset leaders and the first row consists of codewords. Then, we can construct the following table by using the parity check matrix H:

Coset Leaders	Syndromes
$(0,\!0,\!0)$	(0,0)
(1,0,0)	(1,2)
(0,1,0)	(1,0)
(0,0,1)	(0,1)
(2,0,0)	(2,1)
(0,2,0)	(2,0)
(0,0,2)	(0,2)
(1,1,0)	(2,2)
(0,1,1)	(1,1)

(Remark: Since we can correct up to 1 error, the second to seventh row should appear in your answer, but the last two rows of your table may be different from the answer provided.)

- (c) Let v = (2,0,1). Then, the syndrome is vH^T = (2,2) and the corresponding coset leader is r = (1,1,0). Therefore, we decode it as c = v r = (1,2,1).
 (Remark: The decoded result depends on your table constructed in (b).)
- 5. Suppose that F be the field defined by $\mathbb{Z}_2[y]/\langle y^4 + y + 1 \rangle$. Let $\alpha = y$.

(You may assume the fact that $y^4 + y + 1$ is an irreducible polynomial in $\mathbb{Z}_2[y]$.)

- (a) Show that α is a generator of the cyclic group $F^{\times} = F \setminus \{0\}$. (Hint: Show that $\alpha^3, \alpha^5 \neq 1$.)
- (b) Show that $x^{15} 1 \in F[x]$ can be factorized as $(x 1)(x \alpha)(x \alpha^2) \cdots (x \alpha^{14})$.
- (c) Show that $\alpha, \alpha^2, \alpha^4, \alpha^8$ are all zeros of $x^4 + x + 1 \in F[x]$ and $\alpha^3, \alpha^6, \alpha^9, \alpha^{12}$ are all zeros of $x^4 + x^3 + x^2 + x + 1$. (Hint: $(x^4 + x + 1)^2 = x^8 + x^2 + 1$ and $(x^4 + x + 1)^4 = (x^8 + x^2 + 1)^2 = x^{16} + x^4 + 1$.)
- (d) If C is the linear code generated by $g(x) = (x^4 + x + 1)(x^4 + x^3 + x^2 + x + 1)$, show that $d(C) \ge 5$.

Ans:

- (a) Note that F^{\times} has 15 elements. Therefore, α is a generator if $\alpha^3, \alpha^5 \neq 1$. Clearly $\alpha^3 = y^3 \neq 1$ and $\alpha^5 = y^2 + y \neq 1$, so $\alpha = y$ is a generator of F^{\times} .
- (b) Note that $\alpha^{15} = 1$.

Let $f(x) = x^{15} - 1 \in F[x]$. Then, for i = 1, 2, ..., 14, we have

$$f(\alpha^i) = (\alpha^i)^{15} - 1 = (\alpha^{15})^i - 1 = 1^i - 1 = 0.$$

Also, f(1) = 0, so $1, \alpha, \alpha^2, \ldots, \alpha^{14}$ are distinct roots of f(x) while f(x) is a monic polynomial of degree 15 which has at most 15 distinct roots. Therefore,

$$x^{15} - 1 = (x - 1)(x - \alpha)(x - \alpha^2) \cdots (x - \alpha^{14}).$$

(c) Firstly, note that α is a zero of $x^4 + x + 1$, i.e. $\alpha^4 + \alpha + 1 = 0$. Then, we have

$$0 = (\alpha^4 + \alpha + 1)^2 = \alpha^8 + \alpha^2 + 1 + 2(\alpha^5 + \alpha^4 + \alpha) = \alpha^8 + \alpha^2 + 1 = (\alpha^2)^4 + \alpha^2 + 1.$$

Therefore, α^2 is also a zero of $x^4 + x + 1$. Repeating the above, we can show α^4 and α^8 are also zeros of $x^4 + x + 1$. By showing that α^3 is a zero of $x^4 + x^3 + x^2 + x + 1$ and using the above method, we can also show that $\alpha^3, \alpha^6, \alpha^9, \alpha^{12}$ are all zeros of $x^4 + x^3 + x^2 + x + 1$.

- (d) Note that $g(x) = (x \alpha)(x \alpha^2)(x \alpha^3)(x \alpha^4)(x \alpha^6)(x \alpha^8)(x \alpha^9)(x \alpha^{12}).$ Therefore, $g(\alpha) = g(\alpha^2) = \dots = g(\alpha^{1+3}) = 0$ and we have $d(C) \ge 2 + 3 = 5.$
- 6. (a) Show that $x^4 1 \in \mathbb{Z}_5[x]$ can be factorized as (x-1)(x-2)(x-3)(x-4).
 - (b) Let g(x) = (x-3)(x-4) and let C be the cyclic code C over \mathbb{Z}_5 generated by g(x). Show that d(C) = 3 and write down a generating matrix G and a parity check matrix H.
 - (c) What is the decoded vector if y = (2, 2, 4, 2) is received?

Ans:

- (a) Let $f(x) = x^4 1$. Then f(1) = f(2) = f(3) = f(4) = 0 and so 1, 2, 3, 4 are roots of f(x). On the other hand, f(x) is a monic polynomial of degree 4 which has at most 4 distinct roots, therefore, f(x) = (x - 1)(x - 2)(x - 3)(x - 4).
- (b) Let $\alpha = 2$. Then, $\alpha^2 = 4$, $\alpha^3 = 3$, so $x^4 1 = (x 1)(x \alpha)(x \alpha^2)(x \alpha^3)$ and $g(x) = (x \alpha^2)(x \alpha^3)$.

Therefore, $g(\alpha^2) = g(\alpha^{2+1}) = 0$ and we have $d(C) \ge 2 + 1 = 3$.

Note that $g(x) = x^2 + 3x + 2$ and we have a generating matrix

$$G = \left(\begin{array}{rrrr} 2 & 3 & 1 & 0 \\ 0 & 2 & 3 & 1 \end{array} \right).$$

Note that $h(x) = (x^4 - 1)/g(x) = (x - 1)(x - 2) = x^2 + 2x + 2$, so we have a parity check matrix

$$H = \left(\begin{array}{rrrr} 1 & 2 & 2 & 0 \\ 0 & 1 & 2 & 2 \end{array} \right).$$

Alternative method:

Note that $g(\alpha^2) = g(\alpha^3) = 0$, so we have a parity check matrix

$$H = \left(\begin{array}{rrrr} 1 & \alpha^2 & \alpha^4 & \alpha^6 \\ 1 & \alpha^3 & \alpha^6 & \alpha^9 \end{array}\right) = \left(\begin{array}{rrrr} 1 & 4 & 1 & 4 \\ 1 & 3 & 4 & 2 \end{array}\right).$$

(c) Let $H = \begin{pmatrix} 1 & 2 & 2 & 0 \\ 0 & 1 & 2 & 2 \end{pmatrix}$.

We have $yH^T = (4, 4) = 2(2, 2)$ where (2, 2) is the third row of H^T .

Therefore, we decode y as $c = y - 2e_3 = (2, 2, 2, 2)$.

Alternative method:

Let $H = \begin{pmatrix} 1 & 4 & 1 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$.

We have $yH^T = (2,3) = (\alpha, \alpha^3)$ and so $3/2 = \alpha^2$. Therefore, the error located at the third digit.

Note that $yH^T = (2,3) = 2(1,4)$, where (1,4) is the third row of H^T .

Therefore, we decode y as $c = y - 2e_3 = (2, 2, 2, 2)$.